Corrigé proposé par AMIMATHS

Pour chaque exercice:

- > Toute réponse complète apporte 25 points.
- ➤ Si la réponse est incomplète on applique le barème correspondant à cet exercice

Exercice 1 (25 points)

Soient a, b, c et d des nombres réels tels que a+b+c+d=0. On pose

N = (bc - ad)(ac - bd)(ab - cd)

- 1) Montrer que bc-ad = (a+c)(a+b)
- 2) On suppose que a, b, et c sont des entiers naturels,
 - a) Montrer que (a+b)(b+c)(c+a) est un nombre pair.
- b) Déterminer la valeur de N sachant que $2024 \le N \le 2224$

Solution

1) Puisque a+b+c+d=0 alors d=-a-b-cDonc

$$bc-ad = bc-a(-a-b-c) = bc+a(a+b+c)$$

= $b(a+c)+a(a+c) = (a+c)(a+b)$

Barème :	
<u>1° d = -a -b -c</u>	3pts
1) Factorisation	6pts
2.a) parité	4pts
b.) Factorisation	3pts
Carré parfait	3pts
Valeur de N	4pts
Présentation	2pts

- 2) Parmi les entiers a, b et c, deux au moins sont de la même parité alors l'un au moins des sommes (a+b), (b+c) et (c+a) est paire et par conséquent (a+b)(b+c)(c+a) est pair.
- 3) On a bc-ad = (a+c)(a+b).

De même ac-bd = (b+c)(b+a) et ab-cd = (c+a)(c+b)

Donc

$$N = (bc - ad)(ac - bd)(ab - cd) = (a + c)(a + b)(b + c)(b + a)(c + a)(c + b) = ((a + c)(a + b)(b + c))^{2}$$

Alors N est un carré parfait d'un nombre pair et $2024 \le N \le 2224$, or les carrés parfaits compris entre 2024 et 20224 sont 45^2 , 46^2 et 47^2 donc $N = 46^2 = 2116$

Exercice 2 (25 points)

Soient a, b et c des nombres réels tels que |a-b|=1, |b-c|=1 et |c-a|=2

- 1. Montrer que $a^2 + 2b^2 + c^2 2ab 2bc = 2$ et déduire que $\frac{a}{bc} + \frac{b}{ac} + \frac{c}{ab} \frac{1}{a} \frac{1}{b} \frac{1}{c} = \frac{3}{abc}$
- 2. Factoriser l'expression $a^2 ac ab + bc$ puis déduire la valeur de

$$\frac{1}{a^2 - ac - ab + bc} + \frac{2}{b^2 - ab - bc + ac} + \frac{1}{c^2 - ac - bc + ba}$$

Solution

$$\frac{36344301}{a^2 + 2b^2 + c^2 - 2ab - 2bc} = a^2 - 2ab - b^2 + b^2 - 2bc + c^2$$

$$= (a - b)^2 + (b - c)^2 = 2$$

La somme

Barème :	
1. (a-b) ² +(b-c) ² =2	5pts
La Somme	6pts
2. Factorisation	4pts
Autres factorisations	2pts
La somme	5pts
Présentation	3pts

$$\frac{a}{bc} + \frac{b}{ac} + \frac{c}{ab} - \frac{1}{a} - \frac{1}{b} - \frac{1}{c} = \frac{a^2}{abc} + \frac{b^2}{abc} + \frac{c^2}{abc} - \frac{bc}{abc} - \frac{ac}{abc} - \frac{ab}{abc}$$

$$= \frac{a^2 + b^2 + c^2 - ab - ac - bc}{abc}$$

$$= \frac{2a^2 + 2b^2 + 2c^2 - 2ab - 2ac - 2bc}{2abc}$$

$$= \frac{(a^2 - 2ab + b^2) + (b^2 - 2bc + c^2) + (c^2 - 2ac + a^2)}{2abc} = \frac{(a - b)^2 + (b - c)^2 + (c - a)^2}{2abc} = \frac{1^2 + 1^2 + 2^2}{2abc} = \frac{3}{abc}$$

2) Factoriser de l'expression $a^2 - ac - ab + bc$

$$a^{2}-ac-ab+bc = a(a-c)-b(a-c) = (a-b)(a-c)$$

alors

$$\frac{1}{a^2 - ac - ab + bc} + \frac{2}{b^2 - ab - bc + ac} + \frac{1}{c^2 - ac - bc + ba} = \frac{1}{(a - b)(a - c)} + \frac{2}{(b - a)(b - c)} + \frac{1}{(c - a)(c - b)}$$

$$= \frac{c - b - 2(c - a) - (a - b)}{(a - b)(b - c)(c - a)} = \frac{-1}{1} = -1$$

(En effet comme |a-b|+|b-c|=|c-a|, alors (a-b) et (b-c) ont le même signe (a-b)(b-c)=1)

Exercice 3 (25 point)

Le plan est muni d'un repère orthonormé (O, I, J), on donne les points A(-2;1), B(1;2), C(6;0),

$$D(6;-3)$$
 et $E(-1;-2)$.

- 1) Placer les points A, B, C, D et E.
- 2) Calculer l'aire du pentagone ABCDE.

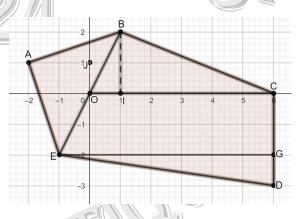
Solution

1)2) Aire du pentagone ABCDE

Soit G(6;-2); S: aire du pentagone ABCDE; A_1 aire du triangle ABE; A_2 aire du triangle OBC; A_3 aire du triangle DEG; A_4 aire du trapèze OCGE.

$$S = A_1 + A_2 + A_3 + A_4$$

Calcul de A₁:



$$\overrightarrow{AB} \begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix} = \begin{pmatrix} 1 - (-2) \\ 2 - 1 \end{pmatrix} \Rightarrow \overrightarrow{AB} \begin{pmatrix} 3 \\ 1 \end{pmatrix} \Rightarrow AB = \sqrt{3^2 + 1^2} = \sqrt{10}$$

$$\overrightarrow{AE} \begin{pmatrix} x_E - x_A \\ y_E - y_A \end{pmatrix} = \begin{pmatrix} -1 - (-2) \\ -2 - 1 \end{pmatrix} \Rightarrow \overrightarrow{AE} \begin{pmatrix} 1 \\ -3 \end{pmatrix} \Rightarrow AE = \sqrt{1^2 + (-3)^2} = \sqrt{10}$$

Les vecteurs \overrightarrow{AB} et \overrightarrow{AE} sont orthogonaux car $3\times 1+1\times \left(-3\right)=3-3=0$, donc le triangle ABE est rectangle A d'où

$$\mathbf{A}_1 = \frac{\mathbf{A}\mathbf{B} \times \mathbf{A}\mathbf{E}}{\mathbf{2}} = \frac{\sqrt{10} \times \sqrt{10}}{\mathbf{2}} = \frac{10}{\mathbf{2}} \Rightarrow \mathbf{A}_1 = \mathbf{5}$$

Barème :	
1. Figure	5pts
2. Choix du découpage	7pts
Validité de la démarche	7pts
Résultat 27,5	3pts
Présentation	3pts

Calcul de A, :

$$\overrightarrow{BI} \begin{pmatrix} x_I - x_B \\ y_I - y_B \end{pmatrix} = \begin{pmatrix} 1 - 1 \\ 0 - 2 \end{pmatrix} \Rightarrow \overrightarrow{BI} \begin{pmatrix} 0 \\ -2 \end{pmatrix} \Rightarrow BI = \sqrt{0^2 + \left(-2\right)^2} = \sqrt{4} = 2$$

$$\overrightarrow{\mathbf{OC}}\begin{pmatrix} \mathbf{x}_{\mathbf{C}} - \mathbf{x}_{\mathbf{O}} \\ \mathbf{y}_{\mathbf{C}} - \mathbf{y}_{\mathbf{O}} \end{pmatrix} = \begin{pmatrix} 6 - \mathbf{0} \\ \mathbf{0} - \mathbf{0} \end{pmatrix} \Rightarrow \overrightarrow{\mathbf{OC}}\begin{pmatrix} 6 \\ \mathbf{0} \end{pmatrix} \Rightarrow \mathbf{OC} = \sqrt{6^2 + \mathbf{0}^2} = \sqrt{36} = 6$$

$$(OC) \perp (BI)$$
 et $I \in (OC)$ donc $A_2 = \frac{OC \times BI}{2} = \frac{6 \times 2}{2} \Rightarrow A_2 = 6$

Calcul de A₃:

On a
$$y_G = y_E \Rightarrow (GE) / / (OI) \Rightarrow GE = 7 \text{ et } x_G = x_D \Rightarrow (GD) / / (OJ)$$

Comme (OI) \perp (OJ), alors (GE) \perp (GD)

GD=1 donc
$$A_3 = \frac{GE \times GD}{2} = \frac{7 \times 1}{2} \Rightarrow A_3 = 3.5$$

Calcul de
$$A_4$$
:
$$C(6;0) \in (OI) \Rightarrow OC = 6 \text{ et } y_G = y_E \Rightarrow (GE) / / (OC)$$

On a:
$$x_G = x_C \Rightarrow (GC) / (OJ)$$
 et $GC = 2$

Comme (OI)
$$\bot$$
(OJ), alors (OI) \bot (GC) \Rightarrow (OC) \bot (GC)

Donc le quadrilatère OCGE est un trapèze rectangle de bases [OC] et [GE] et de hauteur [GC] d'où

$$A_4 = \frac{(OC + GE) \times GC}{2} = \frac{(6+7) \times 2}{2} \Rightarrow A_4 = 13$$

Calcul de S:

$$S = A_1 + A_2 + A_3 + A_4 = 5 + 6 + 3,5 + 13 \Rightarrow S = 27,5$$

Exercice 4 (25 points)

Dans la figure ci- contre, ABCDEFGH est un cube dans lequel toutes les rangées aux extrémités de couleur noire sont constituées de petits cubes noirs ; tous les autres petits cubes sont blancs. Quel est le nombre total des petits cubes blancs dans le cube ABCDEFGH?

Le grand cube est composé de 512 petits cubes.

Il ya 17 rangées de petits cubes noirs (soit 136 petits cubes).

Parmi ces 136 petits cubes noirs:

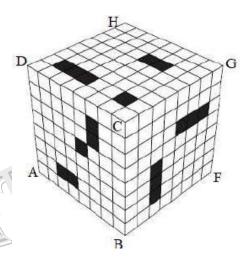
9 petits cubes noirs sont comptés 2 fois.

1 petit cube noir est compté trois fois.

Donc le nombre de petits cubes blancs est :

$$512 - (136 - (9 + 2 \times 1)) = 387$$

Barème :	
Nombre total de petits cubes	5pts
Nombre de cubes dans les 17 rangées	7pts
Nbr de cubes dans l'intersection des rangées	5pts
Résultat 387	5pts
Présentation	3pts



Fin.