Olympiades Nationales de Mathématiques 2024 2^e tour Niveau 7C

Corrigé proposé par AMIMATHS

Exercice 1 (20 points)

Soit ABCD un carré direct. On construit les points P et Q tels que $P \in [AB]$, $Q \in [BC]$ et BP = BQ. Soit H le projeté orthogonal de B sur (PC). Montrer que $(QH) \perp (HD)$

Corrigé

Méthode 1 (Nombres complexes)

On considère le repère orthonormé $(B, \overrightarrow{BC}, \overrightarrow{BA})$. Notons a = BP = BQ. Dans ce repère on a B(0), C(1), A(i), D(1+i), Q(a), P(ai). Notons z l'affixe de H.

Exercice 1	
Méthode	4pts
Sa pertinence	4pts
Raisonnement	5pts
Résultat	5pts
Présentation	2pts

$$> (HB) \perp (PC) \Leftrightarrow \frac{z}{ia-1} \in i\mathbb{R} \Leftrightarrow \frac{z}{ia-1} + \overline{\left(\frac{z}{ia-1}\right)} = 0 \Leftrightarrow z(-1-ia) + \overline{z}(-1+ia) = 0$$
 (1)

$$P, H \text{ et C align\'es} \Leftrightarrow \frac{z-1}{ia-1} \in \mathbb{R} \Leftrightarrow \frac{z-1}{ia-1} - \overline{\left(\frac{z-1}{ia-1}\right)} = 0 \Leftrightarrow (z-1)(-1-ia) - (\overline{z}-1)(-1+ia) = 0$$
 (2)

La somme des égalités (1) et (2) donne

$$(2z-1)(-1-ia) = 1-ia \Leftrightarrow 2z = 1 - \frac{1-ia}{1+ia} = \frac{2ia}{1+ia} \Leftrightarrow z = \frac{ia}{1+ia} = \frac{a}{a-i}$$

Montrer que (QH) \bot (HD) revient à montrer que $\frac{z-a}{z-(1+i)}$ est un imaginaire pur.

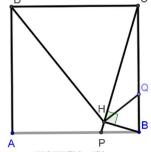
Or
$$\frac{z-a}{z-(1+i)} = \frac{\frac{a}{a-i}-a}{\frac{a}{a-i}-1-i} = \frac{a-a^2+ai}{a-(1+i)a+i-1} = \frac{ia(1-i+ia)}{-ia+i-1} = -ia$$

Donc les droites (QH) et (HD) sont perpendiculaires.

Méthode 2 (Similitudes directes)

Soit S la similitude directe de centre H telle que S(P) = B. Donc l'angle de S est

 $\frac{\pi}{2}$. S(B) = S \circ S(P) donc il appartient à (PH) en plus l'image de (PB) est la perpendiculaire à (PB) passant par B qui est (BC) d'où S(B) est à l'intersection des droites (PH) et (BC) d'où S(B) = C. Comme PBQ est un triangle rectangle isocèle indirecte en B alors son image est aussi un triangle rectangle isocèle



indirecte en S(B) = C. Soit R = S(Q), alors BCR est un triangle rectangle isocèle indirecte en C ce qui n'est autre que BCD d'où S(Q) = D, ce qui montre que HQD est rectangle en H.

Exercice 2 20 points

Notons $A = 4444^{4444}$, B la somme des chiffres de l'écriture décimale de A, C la somme des chiffres de l'écriture décimale de B, et D la somme des chiffres de l'écriture décimale de C. Déterminer D.

Corrigé

A = $4444^{4444} \equiv 7^{4444} [9]$ or $7^3 \equiv 1[9]$ et $4444 \equiv 1[3]$ donc A $\equiv 7[9]$, d'autre part on sait que comme $10 \equiv 1[9]$ alors l'écriture décimale de tout entier est congrue, modulo 9, à la somme de ses chiffres.

Donc $D \equiv C \equiv B \equiv A[9] \Rightarrow D \equiv 7[9]$. $A = 4444^{4444} \le 10000^{4444} = 10^{5\times4444} \le 10^{25000}$, donc $B \le 9 \times 25000$ et par conséquent $C \le 2 + 9 \times 5 = 47$ alors $D \le 4 + 9 = 13$.

Or le seul entier compris entre 0 et 13 qui est congru à 7 modulo 9 est 7 d'où D = 7

Exercice 2	
Méthode	4pts
Sa pertinence	4pts
Raisonnement	5pts
Résultat	5pts
Présentation	2pts

Exercice 3 (20 points)

Soient a, b et c trois réels strictement positifs tels que abc = 1. Montrer que $(a^5 + a^4 + a^3 + a^2 + a + 1)(b^5 + b^4 + b^3 + b^2 + b + 1)(c^5 + c^4 + c^3 + c^2 + c + 1) \ge 8(a^2 + a + 1)(b^2 + b + 1)(c^2 + c + 1)$ (Pb1 JBMO 2011)

Corrigé

On sait que $x^5 + x^4 + x^3 + x^2 + x + 1 = (x^2 + x + 1)(x^3 + 1)$ donc l'inégalité s'écrit $(a^2 + a + 1)(a^3 + 1)(b^2 + b + 1)(b^3 + 1)(c^2 + c + 1)(c^3 + 1) \ge 8(a^2 + a + 1)(b^2 + b + 1)(c^2 + c + 1)$ ce qui revient à montrer que $(a^3 + 1)(b^3 + 1)(c^3 + 1) \ge 8$ or d'après l'IAG on a $(a^3 + 1)(b^3 + 1)(c^3 + 1) \ge 2\sqrt{a^3 \times 1}, 2\sqrt{b^3 \times 1}, 2\sqrt{c^3 \times 1} = 8\sqrt{(abc)^3} = 8$ L'égalité a lieu lorsque a = b = c = 1

	Exercice 3	
١	Décomposition	4pts
١	Inég gauche	5pts
١	Inég droite	5pts
١	Egalité	4pts
ı	~~~·	

Exercice 4

Présentation

2°a)

2°b)

2°c)

5pts

4pts

4pts

5pts

2pts

Exercice 4 (20 points)

Pour tout entier naturel n, on note $U_n = \int_0^{\pi} \frac{\cos nx}{\frac{5}{4} - \cos x} dx$

1° Sachant que $U_0 = \frac{4\pi}{3}$, montrer que $U_1 = \frac{2\pi}{3}$.

- 2° a) Montrer que : $U_n + U_{n+2} = \frac{5}{2}U_{n+1}$.
- b) Montrer que pour tout n : $U_n = \frac{4\pi}{3} \left(\frac{1}{2}\right)^n$.
- c) Calculer, en fonction de n, la somme $S_n = U_0 + U_1 + \cdots + U_n = \sum_{k=0}^{n} U_k$. Calculer $\lim_{n \to +\infty} S_n$.

1° On a
$$U_0 = \int_0^{\pi} \frac{dx}{\frac{5}{4} - \cos x}$$
 et $U_1 = \int_0^{\pi} \frac{\cos x}{\frac{5}{4} - \cos x} dx$ donc

$$\frac{5}{4}U_0 - U_1 = \int_0^{\pi} \frac{\frac{5}{4} - \cos x}{\frac{5}{4} - \cos x} dx = \int_0^{\pi} dx = \pi \Rightarrow U_1 = \frac{5}{4}U_0 - \pi = \frac{5\pi}{3} - \pi = \frac{2\pi}{3}$$

2° a)
$$U_n + U_{n+2} = \int_0^{\pi} \frac{\cos nx}{\frac{5}{4} - \cos x} dx + \int_0^{\pi} \frac{\cos(n+2)x}{\frac{5}{4} - \cos x} dx = \int_0^{\pi} \frac{\cos nx + \cos(n+2)x}{\frac{5}{4} - \cos x} dx$$

Or $\cos nx + \cos(n+2)x = 2\cos x \cos(n+1)x$ donc

$$U_{n} + U_{n+2} = \int_{0}^{\pi} \frac{2\cos x \cos(n+1)x}{\frac{5}{4} - \cos x} dx = \int_{0}^{\pi} \frac{2\left(\cos x - \frac{5}{4} + \frac{5}{4}\right)\cos(n+1)x}{\frac{5}{4} - \cos x} dx \Rightarrow$$

$$U_{n} + U_{n+2} = -2\int_{0}^{\pi} \cos(n+1)x dx + \frac{5}{2}\int_{0}^{\pi} \frac{\cos(n+1)x}{\frac{5}{4} - \cos x} dx = -2\left[\frac{1}{n+1}\sin(n+1)x\right]_{0}^{\pi} + \frac{5}{2}U_{n+1} \Rightarrow$$

$$U_{n} + U_{n+2} = -2 \int_{0}^{\pi} \cos(n+1)x dx + \frac{5}{2} \int_{0}^{\pi} \frac{\cos(n+1)x}{\frac{5}{4} - \cos x} dx = -2 \left[\frac{1}{n+1} \sin(n+1)x \right]_{0}^{\pi} + \frac{5}{2} U_{n+1} \Rightarrow$$

$$U_n + U_{n+2} = \frac{5}{2}U_{n+1} \operatorname{car} \left[\frac{1}{n+1} \sin(n+1)x \right]_0^{\pi} = 0$$

b) Montrons par récurrence que pour tout n : $U_n = \frac{4\pi}{3} \left(\frac{1}{2}\right)^n$

On a $U_0 = \frac{4\pi}{3} = \frac{4\pi}{3} \left(\frac{1}{2}\right)^0$ et $U_1 = \frac{2\pi}{3} = \frac{4\pi}{3} \left(\frac{1}{2}\right)^1$ donc la propriété est vraie pour n = 0 et pour n = 1.

Supposons que pour tout $p \le n+1$, on a $U_p = \frac{4\pi}{3} \left(\frac{1}{2}\right)^p$, donc $U_n = \frac{4\pi}{3} \left(\frac{1}{2}\right)^n$ et $U_{n+1} = \frac{4\pi}{3} \left(\frac{1}{2}\right)^{n+1}$.

D'après 2° a) on a $U_n + U_{n+2} = \frac{5}{2}U_{n+1}$ donc

$$U_{n+2} = \frac{5}{2}U_{n+1} - U_n = \frac{5}{2} \times \frac{4\pi}{3} \left(\frac{1}{2}\right)^{n+1} - \frac{4\pi}{3} \left(\frac{1}{2}\right)^n = \frac{4\pi}{3} \left(\frac{1}{2}\right)^n \left(\frac{5}{2} \times \frac{1}{2} - 1\right) = \frac{4\pi}{3} \left(\frac{1}{2}\right)^n \times \frac{1}{4} = \frac{4\pi}{3} \left(\frac{1}{2}\right)^{n+2}$$

Conclusion pour tout entier n on a $U_n = \frac{4\pi}{3} \left(\frac{1}{2}\right)^n$

c) La suite (U_n) est donc une suite géométrique de raison $q = \frac{1}{2} d'où$

$$S_{n} = U_{0} \times \frac{1 - q^{n+1}}{1 - q} = \frac{4\pi}{3} \times \frac{1 - \left(\frac{1}{2}\right)^{n+1}}{1 - \frac{1}{2}} \Rightarrow \boxed{S_{n} = \frac{8\pi}{3} \left(1 - \left(\frac{1}{2}\right)^{n+1}\right)}.$$

Comme
$$\lim_{n\to +\infty} \left(\frac{1}{2}\right)^{n+1} = 0$$
 alors $\lim_{n\to +\infty} S_n = \frac{8\pi}{3}$.

Exercice 5 (20 points)

Soit ABC un triangle rectangle en C et G son centre de gravité.

Soit P un point de la droite (AG) tel que \angle CPA = \angle CAB et Q un point de (BG) tel que \angle CQB = \angle ABC.

Montrer que les cercles circonscrits aux triangles AQG et BPG se recoupent en un point de la droite (AB)

Corrigé

Méthode 1

ABC étant rectangle en C alors si I est le milieu de [AB] alors IA = IB = IC. Donc le triangle IAC est isocèle en I et $\angle ACI = \angle CAB$.

Puisque $G \in [CI]$ donc $\angle ACG = \angle ACI = \angle CAB = \angle CPA$, ce qui montre que les triangles APC et ACG sont semblables et alors on a $AC^2 = AG \times AP$

Soit D le pied de la hauteur issue de C dans le triangle ABC alors les triangles ACD et ABC sont semblables ce qui donne $AC^2 = AD \times AB$.

D'où $AG \times AP = AD \times AB$ ce qui montre que les points D, G, P et B sont cocycliques. D'où D appartient au cercle circonscrit au triangle BPG. Puisque $G \in [CI]$ donc $\angle BCG = \angle BCI = \angle ABC = \angle CQB$, ce qui montre que les triangles BQC et BCG sont semblables et alors on a $BC^2 = BG \times BQ$.

De même les triangles BCD et ABC sont semblables ce qui donne $BC^2 = BD \times BA$. D'où $BG \times BQ = BD \times BA$ ce qui montre que les points D, A, G et Q sont cocycliques. D'où D appartient au cercle circonscrit au triangle AGQ. Donc les cercles circonscrits aux triangles AQG et BPG se recoupent en D qui est un point de la droite (AB).

Exercice 5 Figure 4pts Méthode 3pts Sa pertinence 3pts Raisonnement 4pts Résultat 4pts Résultat 4pts Présentation 2pts

Méthode 2

On définit D et I comme dans la solution 1. Soit R le point de (AB) tel que AC = CR donc le triangle ACR est isocèle en C. Comme $\angle CRA = \angle CAB = \angle CPA$ donc C, P, R et A sont cocycliques

On a \angle GPR = \angle APR = \angle ACR = 180° - 2 \angle CAB. Comme IC = IB, on a

 \angle GIR = \angle CIB = $2\angle$ CAB = 180° - \angle GPR . Donc G, P, R et I sont cocycliques. D'où AI × AR = AG × AP . Comme ACR est isocèle en C alors D est le milieu de [AR] et puisque I est le milieu de [AB] alors

 $\frac{1}{2} = \frac{AD}{AR} = \frac{AI}{AB} \Rightarrow AD \times AB = AI \times AR = AG \times AP \text{ donc les points D, G, P et B sont cocycliques.}$

Alors D est sur le cercle circonscrit au triangle GPB.

Méthode 3

D et I sont toujours définis comme avant.

On a $\angle ACG = \angle ACI = \angle CAB = \angle CPA = \angle CPG$ donc (AC) est tangente en C au cercle circonscrit au triangle CPG. D'où $AG \times AP = AC^2 = AD \times AB$ donc les points D, G, P et B sont cocycliques. De même $\angle BCG = \angle BCI = \angle CBI = \angle CBA = \angle CQB = \angle CQG$ donc (BC) est tangente en C au cercle circonscrit au triangle CQG. D'où $BG \times BQ = BC^2 = BD \times BA$ donc les points D, G, Q et A sont cocycliques. Alors les cercles circonscrits aux triangles AQG et BPG se recoupent en D qui est un point de la droite (AB).

Fin.

