Corrigé de l'exercice 2

du devoir Amimaths 7C

04/02/2017

Par Moctar Baba Hamdi

Exercice 2

On se propose dans cet exercice de calculer, par deux méthodes différentes, l'intégrale $I = \int_{2}^{3} \sqrt{-x^{2} + 6x - 8} dx \, 1$ On pose $g(x) = \sin x$ avec $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$.

- a) Montrer que g réalise une bijection de $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ sur un intervalle que l'on déterminera et montrer que $\left(g^{-1}\right)'(x) = \frac{1}{\sqrt{1-x^2}}$.
- b) Calculer la dérivée de la fonction H définie par : $H(x) = (x-3)\sqrt{-x^2+6x-8} + g^{-1}(x-3)$.
- c) En déduire le calcul de l'intégrale $I = \int_{2}^{3} \sqrt{-x^2 + 6x 8} dx$.
- 2) En posant $x=3+\cos t$, recalculer I et comparer avec les résultats précédents.

Corrigé

$$I=\int_2^3\sqrt{-x^2+6x-8}dx$$

$$g(x) = \sin x \operatorname{avec} - \frac{\pi}{2} \le x \le \frac{\pi}{2}$$
:

1. a) Montrons que g réalise une bijection de $\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$ sur un intervalle que l'on déterminera et que $(g^{-1})'(x) = \frac{1}{\sqrt{1-x^2}}$:

Comme:

$$\forall x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[, g'(x) = \cos x > 0$$

Alors g est continue et strictement croissante sur $\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$, donc elle réalise une bijection de $\left|-\frac{\pi}{2},\frac{\pi}{2}\right|$ sur l'intervalle $\left|g\left(-\frac{\pi}{2}\right),g\left(\frac{\pi}{2}\right)\right|=]-1,1[$ et :

$$\forall x \in]-1,1[,(g^{-1})'(x) = \frac{1}{g'(g^{-1}(x))} = \frac{1}{\cos(g^{-1}(x))}$$

Or
$$\forall x \in]-1, 1[, g^{-1}(x) \in]-\frac{\pi}{2}, \frac{\pi}{2}[, \text{alors } \cos(g^{-1}(x)) > 0 \Rightarrow \cos(g^{-1}(x)) = \sqrt{(\cos(g^{-1}(x)))^2} = \sqrt{1 - (\sin(g^{-1}(x)))^2} = \sqrt{1 - (g(g^{-1}(x)))^2} = \sqrt{1 - x^2}.$$

Ainsi:

$$\forall x \in]-1,1[,(g^{-1})'(x) = \frac{1}{\sqrt{1-x^2}}$$

b) Calculons la dérivée de $H(x) = (x-3)\sqrt{-x^2+6x-8} + g^{-1}(x-3)$:

$$\forall x \in]2,3[,H'(x) = \sqrt{-x^2 + 6x - 8} + (x - 3)\frac{-2x + 6}{2\sqrt{-x^2 + 6x - 8}} + \frac{1}{\sqrt{1 - (x - 3)^2}}$$

$$= \sqrt{-x^2 + 6x - 8} - \frac{(x - 3)^2}{\sqrt{-x^2 + 6x - 8}} + \frac{1}{\sqrt{-x^2 + 6x - 8}}$$

$$= \sqrt{-x^2 + 6x - 8} + \frac{1 - (x - 3)^2}{\sqrt{-x^2 + 6x - 8}} = \sqrt{-x^2 + 6x - 8} + \frac{-x^2 + 6x - 8}{\sqrt{-x^2 + 6x - 8}}$$

$$= 2\sqrt{-x^2 + 6x - 8}$$

c) Déduisons la valeur de *I* :

$$I = \int_{2}^{3} \sqrt{-x^{2} + 6x - 8} dx = \frac{1}{2} \int_{2}^{3} H'(x) dx = \frac{1}{2} [H(x)]_{2}^{3} = \frac{1}{2} (H(3) - H(2))$$
$$= \frac{1}{2} (g^{-1}(0) - g^{-1}(-1)) = \frac{1}{2} (0 - (-\frac{\pi}{2})) = \frac{\pi}{4}$$

$$\Rightarrow \boxed{I = \frac{\pi}{4}}$$

2. Recalculons I en effectuant le changement de variable $x = 3 + \cos t$

On pose : $x = 3 + \cos t$. On a :

Si
$$x = 2$$
, alors $\cos t = -1 \Rightarrow t = \pi$

Si
$$x = 3$$
, alors $\cos t = 0 \Rightarrow t = \frac{\pi}{2}$

$$dx = -\sin t \, dt$$

 $\sqrt{-x^2 + 6x - 8} = \sqrt{1 - (x - 3)^2} = \sqrt{1 - (\cos t)^2} = \sqrt{(\sin t)^2} = |\sin t| = \sin t \operatorname{car}$ $t \in \left[\frac{\pi}{2}, \pi\right]$.

Et donc:

$$I = \int_{\pi}^{\frac{\pi}{2}} -\sin t \sin t \, dt = \int_{\frac{\pi}{2}}^{\pi} (\sin t)^2 \, dt = \frac{1}{2} \int_{\frac{\pi}{2}}^{\pi} (1 - \cos 2t) \, dt = \frac{1}{2} \Big[t - \frac{1}{2} \sin 2t \Big]_{\frac{\pi}{2}}^{\pi}$$
$$= \frac{1}{2} \Big(\pi - \frac{\pi}{2} \Big) = \frac{\pi}{4}$$

$$\Rightarrow \boxed{I = \frac{\pi}{4}}$$

On constate que c'est la même valeur de I trouvée en 1.c).